Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 13: 793258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693509

RESUMO

We propose Rhythmic Relating for autism: a system of supports for friends, therapists, parents, and educators; a system which aims to augment bidirectional communication and complement existing therapeutic approaches. We begin by summarizing the developmental significance of social timing and the social-motor-synchrony challenges observed in early autism. Meta-analyses conclude the early primacy of such challenges, yet cite the lack of focused therapies. We identify core relational parameters in support of social-motor-synchrony and systematize these using the communicative musicality constructs: pulse; quality; and narrative. Rhythmic Relating aims to augment the clarity, contiguity, and pulse-beat of spontaneous behavior by recruiting rhythmic supports (cues, accents, turbulence) and relatable vitality; facilitating the predictive flow and just-ahead-in-time planning needed for good-enough social timing. From here, we describe possibilities for playful therapeutic interaction, small-step co-regulation, and layered sensorimotor integration. Lastly, we include several clinical case examples demonstrating the use of Rhythmic Relating within four different therapeutic approaches (Dance Movement Therapy, Improvisational Music Therapy, Play Therapy, and Musical Interaction Therapy). These clinical case examples are introduced here and several more are included in the Supplementary Material (Examples of Rhythmic Relating in Practice). A suite of pilot intervention studies is proposed to assess the efficacy of combining Rhythmic Relating with different therapeutic approaches in playful work with individuals with autism. Further experimental hypotheses are outlined, designed to clarify the significance of certain key features of the Rhythmic Relating approach.

2.
Perception ; 39(9): 1172-4, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21125945

RESUMO

Many human and animal tasks are thought to be controlled with the tau informational variable. It is widely accepted that controlling the rate of change of tau (tau) during decelerative tasks, such as when braking or landing, is one common perceptual control strategy. However, many tasks require accelerating before decelerating to a goal, such as reaching. An advancement of tau theory shows how a single action formula may be used to control the full action unit from initiation to peak velocity, and to rest at the goal, with the same perceptual tau information as before and accounting for the same decelerative kinematics as before. Here, we test the theory against data from high-speed video of a hummingbird flying to its flower feeder. We find that the theory accounts for 97% of the variance in the data, and thus supports it.


Assuntos
Aves/fisiologia , Movimento/fisiologia , Percepção Visual/fisiologia , Animais , Fenômenos Biomecânicos , Desaceleração , Voo Animal/fisiologia , Percepção de Movimento/fisiologia
3.
Exp Brain Res ; 189(3): 361-72, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18560815

RESUMO

The sounds in expressive musical performance, and the movements that produce them, offer insight into temporal patterns in the brain that generate expression. To gain understanding of these brain patterns, we analyzed two types of transient sounds, and the movements that produced them, during a vocal duet and a bass solo. The transient sounds studied were inter-tone f (0)(t)-glides (the continuous change in fundamental frequency, f (0)(t), when gliding from one tone to the next), and attack intensity-glides (the continuous rise in sound intensity when attacking, or initiating, a tone). The temporal patterns of the inter-tone f (0)(t)-glides and attack intensity-glides, and of the movements producing them, all conformed to the mathematical function, tau (G)(t) (called tauG), predicted by General Tau Theory, and assumed to be generated in the brain. The values of the parameters of the tau (G)(t) function were modulated by the performers when they modulated musical expression. Thus the tau (G)(t) function appears to be a fundamental of brain activity entailed in the generation of expressive temporal patterns of movement and sound.


Assuntos
Estimulação Acústica/métodos , Modelos Teóricos , Música , Desempenho Psicomotor/fisiologia , Comportamento/fisiologia , Encéfalo/fisiologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...